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/66673 ABSTRACT / /g

Generalized eguations are obtained for radiative diffusion in a non-
grey gas and for the energy jump at a wall. By u;ing the expression for
the energy Jjump at a wall, the diffusion approximation for radiation in
a gas 1s improved considerably, the range of validity of the approxima-
tion being extended to lower values of optical thickness. ByTHor

INTRODUCSTION o o

Thermal radiation in a gas is generally complicated by the fact
that the radiation passing a given plane originates at points throughout
the gas. This leads to the necessity of solving an integral equation [l].l
However if the gas is optically thick, the mean free path for the radiant
energy may be small compared with the overall dimensions of the system.
Under these conditions the radiation can be considersd as s diffusion
process, and the problem reduces to one of solving a modified heat con-
duction equation [2,3].

Although the diffusion approximation works well in the interior of
a gas, it 1s not accurate near boundaries. Thus, except for extremely

large optical thicknesges, considerable error mey be made in the calculation

lNumbers in brackets designate references at end of paper.
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of radiant heat transfer through a gas for given temperatures of the
bounding Wélls° This is illustrated in Fig. 2.

In the present paper the diffusion equations for the thermal radia-
tion in a non-grey gas are first generalized by including spacial deriv-
atives of higher order than the first. The range of applicability of
the diffusion approximation is extended by introducing higher order jump
boundary conditions at the walls. Shorin [4] has used first order jump
boundary conditions, but inasmuch as his results for large optical
thickness differ from those obtained from exazct solutions, it seems
desirable to reexamine the whole problem. Konakov [5] has also considered
the effect of walls on radiation. Although he did not use jump boundary
conditions, his results are similar to those of Shorin, in that they do
not reduce to the correct form for large optical thicknesses [6].

The fact that the temperature in the gas next to a wall should differ
from the wall temperature can be seen physically as follows: The radiative
flux passing through a plane next to a wall is made up of flux coming
from the wall and from gas which, on the average, is a radiation mean
free path away from the wall. Thus the average temperature of the radia-
tion passing through the plane next to the wall wiil lie between the wall
temperature and the temperature a mean free path away from the wall.

This effect is similar to the temperature jump next to a wall which occurs
in heat transfer by conducticn in rarefied gases.

Throughout the analysis the heat transfer is assumed to be entirely

by radiation, the effects of conduction belng assumed negligible. This



would be an allowable assumption, for instance, at very high temperatures.
When the effects of conduction are not negligible, the conduction and
radiation are not strictly additive because of the nonlinearity of the
equations. However, calculations made in reference [7] indicate that
the error made in assuming that they can be added lies between O and
9 percent.

In the next section the equation for the radiant heat transfer in
a gas, as well as for the energy Jjump at & wall will be derived. A non-
grey gas bounded by grey walls will be considered. The absorption
coefficient as assumed not to vary appreciably over a mean free path for

the radiation.

NOMENCTATURE
A area (see Fig. 1)
c velocity of light
Cp specific heat at constant pressure
D diameter
aE,, emission from d- at frequency Y which passes through dA

dE,; radiant flux at frequency V¥ passing through dJdA from above
(see Fig. 1)
V2 radiant flux at frequency Vv passing through dA from below

(see Fig. 1)

ey total emmisive power of black wall, GT%
eg total emissive power of gas, i
ey spectral emissive power of gas given by Planck's distribution

function, equation (14)
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spectral emissive power of black wall given by Planck's distribution
function, equation (14)

Planck's constant, heat transfer coefficient

defined by equation (20)

Boltzmann's constant

thickness of gas space

heat source per unit volume

radiant heat transfer per unit area

radiant heat transfer per unit area per unit frequency increment

radius

absolute temperature

time

gas velocity

coordinate defined by Fig. 1 measured in direction of gas flow

coordinate defined by Fig. 1

coordinate defined by Fig. 1

wall emissivity

angles in spherical coordinate system, ¢ defined in Fig. 1

Rosseland mean absorption coefficient defined by equation (18)

mean ebsorption coefficient defined by equation (19)

spectral absorption coefficient

defined by equation (33)

defined by equation (4)

gas density

Gamma function
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0 Stefan-Boltzmann constant = 1.714x1079 Btu/(hr)(£t2)(R4)
T  volume
®  solid angle, steradians
Subscripts:
¢ refers to centerline
w refers to wall
Z in direction =z
0 defined in Fig. 1, also refers to gas at wall
1 refers to inner radius, except in El
2 refers to outer radius, except in Ep
BASIC EQUATTIONS

To obtain the generalized diffusion equations for the radiation in
a gas, together with the jump boundary condition at & wall, consider the
radiation streaming through an area element dA at point (XO’yO’ZO) from
a volume element of gas dt at (x,y,z) (Fig. 1). The spectral emissive
power e, at (x,y,z) can be related to conditions at (xo,yO,zO) by expand-
ing ey 1n a three-dimemsional Taylor series about (xo,yo,zo). This
gives

[ee]

n=1

If we apply the binomial theorem twice to the factor in brackets we obtain
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(z - Zo)n (y - Yo X - xo)s< dnev

(n - v)!(v - 8)ls! Nn-Vvy V-S3_85
3z Voy ' "Bax o
n=0 v=0 s=0

(1)
The symbols are defined in the NOMENCLATURE. The emission from 4t at

frequency Vv which passes through dA is
dEy = 4kyey 4T %% e~Kvr (2)

In order for the exponential factor in equation (2) to be applicable,
the assumption must be made that the spectral asbsorption coefficient «,
is effectively uniform over a mean free path for the radiation.

The solid angle dw eciuals dA cos 9./1'2 and

dT = r2 sin 6 dr d9 46

We can write equations (1) and (2) in spherical coordinates with origin
at dA by setting

x—x0=rsin9czoscp,y-y0=rsin6sin(p, Z = Zp =T COS 8
From the preceeding equations, the total radiant flux per unit frequency

increment passing through dA from above is
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Ky dA\\ ‘S anev
(n -v)! (V - s)ts! an'vbyv'saxs -
0

n~ v=0 s

n/2  N2m A
'L//j L/ L//\ (r cos 8)2V(r sin 6 sin ¢)V"5(r sin 6 cos ¢)°
Jo 0 0

* cos 6 sin @-e” VT ar dav a6

*_Q‘ ,V__\ N
i \ Y Q(n,v,s) ‘1_"'/ ° i S) (3)

4xn /, /// _MI K% \azn-vayv-sax

n—
where

Hre) - [ :H (n - 'v;l(v - s);Z:PC/ ;<4> ‘2 =

and I' is the Gamma function.
In order to obtain the radiation from below, we let 6 go from
ﬁ/Z to m, instead of from O +to n/Z, and take the negative value

the result:

= ® ,.,n_,\_V\ 1 / ane
dEyo = = ; J> v(—l) (n:V:S)[n \amn_-vayv-sa s (5)

=0 =0 s=0

The net radiant heat transfer per unit area per unit frequency increment

passing through dA in the direction 2z is
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n: v=0 =0
anev

' ‘\aznwvayv-saxs o (6)

Similar expressions can be obtained for qu and Qyx-

Next the energy jump at a grey wall which is immediately below but
not touching the area dA will be obtained. As before, the radiation
passing through the area from sbove is given by equation (3). The energy
coming from the wall and passing through dA is made up of radiation
emitted by the wall and that reflected from the wall, the latter having
been originally emitted by the gas. Thus

dByp = €eyy dA + (1 - €) dByy (7)
where € is the wall emissivity and eyp 1s the spectral emissive power

for a black wall. Solving equation (7) for S

dByp - dE,q) dE, dE
eVb:'lE” = /l>+ - <ln%)q1’2+£qu+~- vl (8)

€ 2 dA
Substituting equations (3) and (6) in (8) and removing the term for

=0 from the summation give

Syp = Cvg = <—l€— - %-)(I-'vz@ + -é—L; > ? 1+ -l)n“‘%ﬂ(n,v, )
ANe

i \! (9)
55 \azn-"ay“’-saxs )O
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where Q(n,v,s) is agaln given by equation (4). Similarly if the wall

is above rather than below dJdA

€yo = €yp = (% - %>quo - g; jgi: ?;L\ zg:; E-+ (-l)n'i}n(n,v,s)

=1 w0 =

one.

1 -V

e S> (lO)
o)

kS \3zP oy VB3

Equations (4), (6), (9), and (10) give the general expressions for
the heat flux in the gas and for the energy Jjumps at the walls. It
should be noted that the expression for the heat flux is strictly accurate
only for regions at least a radiation mean free path away from the walls,
inasmuch as the integration in equation (3) was carried to infinity.
However, as is done for heat conduction in rarefied gases, we use the
equation throughout the gas and account for the effects of the walls by
introducing Jjump boundary conditions.

In the remainder of the paper we will neglect terms in the series
of higher order than the second. (Terms containing zero, first, and
second derivatives are retained.) From equations (4), (6), (9), and (10)

we then obtain

Je,
. & v
drg 3K, Oz (11)
ev‘b - € = <§'—- - ;L.> e} + 1 828"/\ N 1 azev + 1 <azev
v Y O
A A A A SRS

(12)
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for a wadl below the gas, and

evo = eyp = <;__;>qu0_ 1 8289 1 [3Pey) | 1 [0,
€ 2 2k \022/ o 4§ \Oy? ar§ \ %% /g

(13)

for a wall above the gas. The subscripts O are omitted in equation (11)

because that expression for the heat flux is used throughout the gas.

@
o

It is correct to second order because the terms containing second deriva-
tives are zero. Equation (11) was obtained by Rosseland [2] and is
generally known as the Rosseland approximation. The first term on the
right side of equation (12) or (13) was obtained by Shorin [4]. However,
his results differ from those cobtained here even when the second degree
terms are neglected, because he used an expression other than equation (11)
for the heat flux close to a wall.

Equations (11) to (13) apply to a single frequency V. They can be
integrated over all frequencies to obtaln equations involving the total
radiative heat flux and the total emissive power. The spectral emissive
power e, can be written as a function of Vv and the total emissive
power e, = ors by writing Planck's distribution function in the form

. - 25hv° (14)

c? exp (hvol’//ék‘"leél/ ‘% -1

Thus consider e, in equations {11) to (13) to be a function of Vv and

€gs and apply the rules of partial differentiation of composite functions.
Tf we muitiply the equations by dv and integrate from O to =, we

obtain



Jde
= . 4% =
L (1)
2 2 2
o - oo = (2 Dy + Ly [ ok +£(ae> P L 3&)
b g0 € 2/ *20 ZKE dze 0 2\ Z 0 4K§ 5y2 0

2 32 _/3e \2
8y /o @ \oxZ o & =/,

for a wall below the gas, and

1 1 1 [o%e T Beg a 1 Bzeg
e 0 "~ e-b = <_ - _>q_ o - ___..<__& - _< -
g € YT 2k2\022 Jy 2\0z akg \oy2 /q

Eaeg>2 1 [y EGG A2
AT 4KE <5x2 o 4 BE%QO (1)

for a wall above the gas, where

de
L= L ¥y (18)
g
0
de
L - L 5_" av (19)
ré K% €s
0
[ole]
de,
T = 2 v (20)
K& Beg
0

The derivatives of e, with respect to g in these equations are obtained

from equation (14). For a grey gas, Ky 1s independent of Vv and equa-

tion (20) becomes
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2 d2e
I=—J-'—§—-2— evdv.=—l§-—2§=0 (21)
[C% aeg Kv Seg

0
For a non-grey gas it is, of course, necessary to know K, as a function
of Vv and e, in order to evaluate equations (18) to (20). The Rosseland
mean absorption coefficient K, has been calculated for high temperature
air in reference 8.
In the following sections equations (15) to (17) will be used for the
solution of a few illustrative problems.

ILLUSTRATIVE EXAMPLES AND COMPARISON WITH EXACT SOLUTIONS

Stationary absorbing gas between walls. - Consider first the radiant

heat transfer in a stationary gas bounded by two infinite, plane, parallel
walls at horizontal planes 1 and 2. For this case 4, 1is independent
of =z, the direction normal to the walls, so that equation (15) can be

integrated to give
egl - eg = —4— Qg2 (22)

or

egl - eg2 _ 3KpL

. : (23)

where L 1is the distance between the plates and k. 1s assumed constant..

From equations (18), (17), and (22) the energy jumps at the walls are

‘ol = Sl
q, &

5
4o

L g 2
- 3t 75 Kpagl (24)
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and
e -
g2 =~ %2 1 1 9
STl R (25)

Note that the second and higher order derivatives in equations (16)
and (17) are O for this case. Adding equations (23) to (25), and taking
the reciprocal of the result give

Az, _ 1

m&  _ oméd B 3KkpL 1 1
0<?wl ﬂ%ﬁ; Z -t =1

where e, has been replaced by its equivalent, GTé.

(26)

Equation (26) is plotted against optical thickness KL for several
values of wall emissivity in ¥Fig. 2. Also plotted for comparison are an
exact solution from reference 6, the usual diffusion approximation which
neglects the energy jumps at the walls (eq. (23)), and Shorin's result [4].

The improvement of the diffusion approximation by introduction of
Jump boundary conditions is considerable, the agreement with the exact
solution being within 5 percent for all values of KpL. The agreement
of the present analysis with the exact solution is also considerably better
than that from reference 4, the latter giving values of heat flux about
25 percent too low for large values of rrL. The same comment applies
to the results of reference 5.

As the wall emissivity decreases, the radiant heat transfer for a
given temperature difference decreases. This is because the heat transfer
t the wall decreases as € decreases (eq. (24)).

It is of interest that equation (26) reduces to the correct form for

heat transfer between walls with no absorbing gas when L = O.
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Consider next the case where the walls are cylindrical and concentric
rather than plane. In this case the heat transfer per unit area q is

inversely proportional to radius, and equation(15) can be integrated to

give
SKprydy r
egl - eg = ——4?——- ln ;‘i' (27)
or

e - e 3K, r
gl ~ g2 Trlq,E (28)
4 4 1

where the subscripts 1 and 2 refer, respectively, to the inner and
cuter radii. The energy Jjumps at the inner and outer walls are obtained
from equations (16) and (17). The derivatives in those equations are
obtained by setting r = (22 + y2)Y/2 1in equation (27), differentiating,

and setting y = O. Thus

3 - e 3K

i'i.];_.g.:l;-_-:_];._i+___r_+9_..qll (29)

a1 €. 2  16klr, 32T

51
and
€g2 “ %2 1 (1 1) KF1 9 [f1F 2

“T\§ "3 ez =\E) gut (30

a1 To \*2 léxgrs r2

Addition of equations (28) to (3G) and use of the relation
ry = L/[(rp/ry) - 11, where L is the radial distance between the walls,

give
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4
(- i) Sl <_2_>+ 11,4 <_l_ ;>
q - T T €& 2 "ro \es T2
1 QKE%> {] 1/ & 2 \&2
1

9 ql (kL)2 L)
6 <5 z T 32 12 K } (s1)
R L (
\F1/

For small heat flux the last term can be neglected.

A plot of the reciprocal of equation (31) for K./« = 1, small
heat flux, and for various values of radius ratio and wall emissivity
is given in Fig. 3. For Kyl = O, the correct expression for
a/ o [( S - Twzﬂ ie 1/{(1/g) + (x1/rp){(1/e,) - 11} if the reflection
is diffuse. Thus, equation (31) reduces to the correct expression for
Ky = O only when rl/r2 = 1. This is perhaps not surprising because
the series in equations (6), (9), and (10) were truncated at terms of
order two. For the case of the plane plates the higher-order derivatives
were zero, but here they are all non-zero. In order to given an idea of
" the range of values of Kpl for which the present approximation is
valid, curves for the Monte Carlo solution of Perlmutter and Howell [9l
are plotted dashed in Fig. 3. It is evident that the approximation is
good at rather low values of «p.L. when rz/rl is not too large. As
the range of its applicability moves to higher

values of K.L. However, in all cases the improvement over the
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usual diffusion approximation is considereble. Comparison of these results
with the Monte Carlo solution indicates' that they could be extrapolated
to lower values of kKpL by drawing a smooth curve which is tangent to
the curve for the present results and which intersects the known correct
ordinate for «yL = 0.

Absorbing gas with heat sources and flow. - Next a simplified version

of the radiation to or from a gas containing heat sources and flowing
between two parallel walls will be considered. The net rate of heat flow
out of & unit volume V - E can be equated to the heat source within

the volume Q' minus the rate of change of enthalpy within the volume
pe, DT/Dt. From equation (15), the heat flow vector E is

- (4/3KT)VEg, if we consider only radiant heat transfer. Thus the energy

balance becomes

—_i_V-Ve =—._4s__vzeg=Q'—pcp

32
3Ky g 3Ky (s2)

A

where the properties are assumed constant. Equation (32) will, of course,
be the same as the heat conduction equation if we replace 4/5Kr by

the thermal conductivity and eg by the temperature. For steady-state
conditions and velocities in the x-direction only, the substantial deriva-
tive in the last term becomes u 4T/dx. If we neglect heat transfer in
the direction of motion, as is usually done for heat conduction in moving

fluids, equation (32) becomes

45268:-Q‘!+pcuam=}\\
3Ky Jg2 P” ox

—~
N
(&

~r
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In order to simplify the problem we consider the case where A 1is
independent of 2z and the two walls are at the same temperature. Then,

if 2z = 0 at the center of the channel, one integration of equation (33)

gives
de
N - G, (34)
3K, dz
Another integration gives
SKI‘?\ 2
€g = €gc = ~§— 2 (35)
or
5:'(1-7\.[12
°g0 = gc = Tz (26)

where the subscript O refers to conditions in the gas at the wall, c
refers to the center of the channel, and L is the width of the channel.

Evaluation of equations (15) and (34), at the wall gives

2ay
A= =X 37
2 (57)
50 that
egO - Cge 3
= 2= KL (38)
Ay 16

The energy Jjump at the wall is given by equation (16) where the deriva-

ct

ives at the wall are obtained from equations (35) and (37). Thus

- e 3K
b " 7g0_ L _ % +— + -592— IxZq, (39)
dw € 4KEL
and
K \8
4 4 e
o\Ty - Tg 3 1 1 Ks 9 fGy1 2

= =+ =

T 5 &Lt T -t o tElE SN (40)
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A plot of the recriprocal of equation (40) is given in Fig. 4. for
Kf/KS = 1, small heat flux, and for several values of €. Included for
comparison are curves for the Monte Carlo solution of Howell and
PerImutter [10] and the usual diffusion approximation without Jjump
boundary conditions (eq. (38)). The agreement between the present modified
diffusion solution and the Monte Carlo solution is reasonably good over
the entire range of values of k., the agreement, of course, being best
for the higher values of «yL. Comparison of these curves with that for
the usual diffusion approximation shows, as in the preceding cases, the
considerable effect of the energy jump at the wall.

Figure 4 can be used to estimate the radiant heat transfer produced
by injecting smoke or particles into the gas stream. The ordinate in
Fig. 4 can be written as h(Tw - Tc)/(T% - T%)a where the heat transfer
coefficient h = q/(T, - T.) is based on the difference between the
wall and centerline temperatures. If sufficient smoke is injected into
the stream to produce a kL of about 2, Fig. 4 indicates that, for tem-
peratures on the order of 4,0000 F, heat transfer coefficients on the
order of 500 Btu/(hr)(ft2)(°F) might be obtained. It would not be expected
that the introduction of the smoke would greatly affect the pressure
drop, so that this appears to be a possible way of obtaining very large
heat transfer coefficienle in a gas without correspondingly large friction
factors.

If we consider a

can be written in cylindrical coordinates as
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¢ 14 ( deg,
3 T dr <r ar >“ A (a1)

Solution of this equation gives

3i<]?q_w

- = et 2

€g = Sge 4D r (42)
The energy Jjump at the wall is obtained from equation (17) (qzo>= - Q)

and the derivatives at the wall in that equation are calculated by setting
r2 = 22 + y2 in equation (42) and letting y go to zero after differen-

tiating. The final equation is

4 9 53>2
G(Tw - Tc) _ 3X,D 1 1 Ks 9 Gyt
€

9 &t 2
. T8 2 " BKED ' 32 D2 (krD) (43)

A plot of the reciprocal of equation (43), together with the Monte Carlo
solution of reference 9, is plotted in Filg. 5. Good agreement between
the two solutions is indicated.

For a gaseous sphere containing heat sources, we can write equa-

tion (32) or (33) as

4 1 4 zdeg -
3K p2 dr (? dar / A (44)
and
SKrdw 2
eg - egc = —z-D— r (4:5)

For this case we obtain the derivatives in equation (17) by setting
r2 = 22 + y2 + x2 in equation (45) and letting y and x go to zero

after differentiating. The final equation for the sphere is
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T 18 €% Ta2kD 3232

4 4 e
o\T; - T 3KpD K Gy L
W

Note the similarity between equations (40), (43), and (46).
As a final example consider a radiating gas flowing in an annulus

which is heated at the inner radius ry and cooled at the outer one rs.
Integration of equation (41) between r1 and. rg and. use of equatlons

(18) and (17) give, for this case,

r 1o @ r
ooty - 7t ) 31, 1n <-§> . [(-2- " -1-21n <_§>]
wl ~ 1/ 3Kl AL L1/ 1
SRR I R
1 1

Kp\2
' 3<E—> r 2l rq \2

+1 .1+ j; - l>.g§ 4 2l [Ji -1 + AE_ 1 - .QL)

€& 2 €5 2 a lek,.L Erl 2qy ro

9 il 2|, (%Y
+ = = (KpL)7 |1 - | — 47

ssz(r)_ a1 (47)

and

L )

where I is again the difference between the inner and outer radii, and

(48)

A is defined by equation (33). Equations (47) and (48) might, for
instance, be used to estimate the heat transfer from an arc of radius

Ty to an abosrbing gas flowing along it through a tube of radius rs.
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CONCLUDING REMARKS

By using second-order jump boundary conditions at walls, the range
of validity of the diffusion approximation is extended to comparatively
low values of optical thickness. For radiant heat transfer in a stationary
gas between flat surfaces, the method glves good results for all values
of optical thickness. For concentric cylindrical surfaces good results
are obtained for moderate and high values of optical thickness, but the
method breaks down before an optical thickness of zero is reached. The
results ilmprove as the radius ratio gets closer to 1.

For heat transfer from parasllel plates or from & tube to a moving
gas with heat sources, the method gives reasonsble results for all
values of optical thickness. The results for this case indicate that
very high heat transfer coefficients might be obtained by introducing
smoke or particles into a gas flowing in a passage at high temperatures.
The effect of wall emissivity, which is neglected in the usuel diffusion
approximation, is accounted for in the present method. The results can
be appllied to a non-grey gas if the spectral sbsorption coefficlent of
the gas is known es a function of frequency end temperature.
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FIGCRE TITLES

Figure 1. - Sketch for deriving diffusion equations.

Figure 2. =~ Thermal radiation between flat surfaces with intervening
stationary gas. Solid curves calculated from equation (26).

Figure 3. - Thermal radiation between concentric cylindrical surfaces with
intervening stationary gas. Solid curves calculated from equation (31).
for small heat flux and Kp/Kg = 1.

Figure 4. - Thermal radiation from channel walls to flowing gas with heat
sources. Solid curves calculated from equation (40) for small heat
flux and K./ /kg = L.

Figure 5. ~ Thermal radiation from tube to flowing gas with heat sources.
Solid curves calculated from equation (43) for small heat flux and

Kp/Kg = 1.
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Fig. 1. Sketch for deriving diffusion equations.
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